352 research outputs found

    Statistical mechanics of ontology based annotations

    Full text link
    We present a statistical mechanical theory of the process of annotating an object with terms selected from an ontology. The term selection process is formulated as an ideal lattice gas model, but in a highly structured inhomogeneous field. The model enables us to explain patterns recently observed in real-world annotation data sets, in terms of the underlying graph structure of the ontology. By relating the external field strengths to the information content of each node in the ontology graph, the statistical mechanical model also allows us to propose a number of practical metrics for assessing the quality of both the ontology, and the annotations that arise from its use. Using the statistical mechanical formalism we also study an ensemble of ontologies of differing size and complexity; an analysis not readily performed using real data alone. Focusing on regular tree ontology graphs we uncover a rich set of scaling laws describing the growth in the optimal ontology size as the number of objects being annotated increases. In doing so we provide a further possible measure for assessment of ontologies.Comment: 27 pages, 5 figure

    Statistical Modelling of the Visual Impact of Subretinal Fluid and Associated Features

    Get PDF
    Introduction: The aim of this study was to develop a statistical model to determine the visual significance of subretinal fluid (SRF) in combination with other constructed optical coherence tomography (OCT) features in patients with wet age-related macular degeneration. Methods: The project used labelled data from 1211 OCTs of patients with neovascular macular degeneration (nAMD) attending the macular treatment centre of Manchester Royal Eye Hospital to build a statistical model to determine vision for any virtual, constructed OCT. A four-dimensional plot was created to represent the visual impact of SRF in OCTs in the context of the associated OCT characteristics of atrophy and subretinal hyperreflective material (SHRM). Results: The plot illustrates that at levels of SRF below 150 µm, the impact of SRF on vision is very low. Increasing the amount of fluid to 200 µm and beyond increases the impact on vision, but only if there is little atrophy or SHRM. Conclusions: This study suggests that levels of SRF up to around 150 µm thickness on OCT have minimal impact on vision. Greater levels of SRF have greater impact on vision, unless associated with significant amounts of atrophy or SHRM, when the additional effect of the SRF on vision remains low

    A Map of the Universe

    Full text link
    We have produced a new conformal map of the universe illustrating recent discoveries, ranging from Kuiper belt objects in the Solar system, to the galaxies and quasars from the Sloan Digital Sky Survey. This map projection, based on the logarithm map of the complex plane, preserves shapes locally, and yet is able to display the entire range of astronomical scales from the Earth's neighborhood to the cosmic microwave background. The conformal nature of the projection, preserving shapes locally, may be of particular use for analyzing large scale structure. Prominent in the map is a Sloan Great Wall of galaxies 1.37 billion light years long, 80% longer than the Great Wall discovered by Geller and Huchra and therefore the largest observed structure in the universe.Comment: Figure 8, and additional material accessible on the web at: http://www.astro.princeton.edu/~mjuric/universe

    Strong position-dependent effects of sequence mismatches on signal ratios measured using long oligonucleotide microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarrays are an important and widely used tool. Applications include capturing genomic DNA for high-throughput sequencing in addition to the traditional monitoring of gene expression and identifying DNA copy number variations. Sequence mismatches between probe and target strands are known to affect the stability of the probe-target duplex, and hence the strength of the observed signals from microarrays.</p> <p>Results</p> <p>We describe a large-scale investigation of microarray hybridisations to murine probes with known sequence mismatches, demonstrating that the effect of mismatches is strongly position-dependent and for small numbers of sequence mismatches is correlated with the maximum length of perfectly matched probe-target duplex. Length of perfect match explained 43% of the variance in log<sub>2 </sub>signal ratios between probes with one and two mismatches. The correlation with maximum length of perfect match does not conform to expectations based on considering the effect of mismatches purely in terms of reducing the binding energy. However, it can be explained qualitatively by considering the entropic contribution to duplex stability from configurations of differing perfect match length.</p> <p>Conclusion</p> <p>The results of this study have implications in terms of array design and analysis. They highlight the significant effect that short sequence mismatches can have upon microarray hybridisation intensities even for long oligonucleotide probes.</p> <p>All microarray data presented in this study are available from the GEO database <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>, under accession number [GEO: GSE9669]</p

    Origin of Life

    Full text link
    The evolution of life has been a big enigma despite rapid advancements in the fields of biochemistry, astrobiology, and astrophysics in recent years. The answer to this puzzle has been as mind-boggling as the riddle relating to evolution of Universe itself. Despite the fact that panspermia has gained considerable support as a viable explanation for origin of life on the Earth and elsewhere in the Universe, the issue remains far from a tangible solution. This paper examines the various prevailing hypotheses regarding origin of life like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes that delivery of life-bearing organic molecules by the comets in the early epoch of the Earth alone possibly was not responsible for kick-starting the process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio

    Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity.

    Get PDF
    BACKGROUND: The serious biological consequences of metal toxicity are well documented, but the key modes of action of most metals are unknown. To help unravel molecular mechanisms underlying the action of chromium, a metal of major toxicological importance, we grew over 6,000 heterozygous yeast mutants in competition in the presence of chromium. Microarray-based screens of these heterozygotes are truly genome-wide as they include both essential and non-essential genes. RESULTS: The screening data indicated that proteasomal (protein degradation) activity is crucial for cellular chromium (Cr) resistance. Further investigations showed that Cr causes the accumulation of insoluble and toxic protein aggregates, which predominantly arise from proteins synthesised during Cr exposure. A protein-synthesis defect provoked by Cr was identified as mRNA mistranslation, which was oxygen-dependent. Moreover, Cr exhibited synergistic toxicity with a ribosome-targeting drug (paromomycin) that is known to act via mistranslation, while manipulation of translational accuracy modulated Cr toxicity. CONCLUSION: The datasets from the heterozygote screen represent an important public resource that may be exploited to discover the toxic mechanisms of chromium. That potential was validated here with the demonstration that mRNA mistranslation is a primary cause of cellular Cr toxicity.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Genome-Wide Analysis of the Effects of Heat Shock on a Saccharomyces cerevisiae Mutant With a Constitutively Activated cAMP-Dependent Pathway

    Get PDF
    We have used DNA microarray technology and 2-D gel electrophoresis combined with mass spectrometry to investigate the effects of a drastic heat shock from 30℃ to 50℃ on a genome-wide scale. This experimental condition is used to differentiate between wild-type cells and those with a constitutively active cAMP-dependent pathway in Saccharomyces cerevisiae. Whilst more than 50% of the former survive this shock, almost all of the latter lose viability. We compared the transcriptomes of the wildtype and a mutant strain deleted for the gene PDE2, encoding the high-affinity cAMP phosphodiesterase before and after heat shock treatment. We also compared the two heat-shocked samples with one another, allowing us to determine the changes that occur in the pde2Δ mutant which cause such a dramatic loss of viability after heat shock. Several genes involved in ergosterol biosynthesis and carbon source utilization had altered expression levels, suggesting that these processes might be potential factors in heat shock survival. These predictions and also the effect of the different phases of the cell cycle were confirmed by biochemical and phenotypic analyses. 146 genes of previously unknown function were identified amongst the genes with altered expression levels and deletion mutants in 13 of these genes were found to be highly sensitive to heat shock. Differences in response to heat shock were also observed at the level of the proteome, with a higher level of protein degradation in the mutant, as revealed by comparing 2-D gels of wild-type and mutant heat-shocked samples and mass spectrometry analysis of the differentially produced proteins

    Phylogenetic relationship and virulence composition of Escherichia coli O26:H11 cattle and human strain collections in Scotland; 2002-2020

    Get PDF
    O26 is the commonest non-O157 Shiga toxin (stx)-producing Escherichia coli serogroup reported in human infections worldwide. Ruminants, particularly cattle, are the primary reservoir source for human infection. In this study, we compared the whole genomes and virulence profiles of O26:H11 strains (n = 99) isolated from Scottish cattle with strains from human infections (n = 96) held by the Scottish Escherichia coli O157/STEC Reference Laboratory, isolated between 2002 and 2020. Bovine strains were from two national cross-sectional cattle surveys conducted between 2002–2004 and 2014–2015. A maximum likelihood phylogeny was constructed from a core-genome alignment with the O26:H11 strain 11368 reference genome. Genomes were screened against a panel of 2,710 virulence genes using the Virulence Finder Database. All stx-positive bovine O26:H11 strains belonged to the ST21 lineage and were grouped into three main clades. Bovine and human source strains were interspersed, and the stx subtype was relatively clade-specific. Highly pathogenic stx2a-only ST21 strains were identified in two herds sampled in the second cattle survey and in human clinical infections from 2010 onwards. The closest pairwise distance was 9 single-nucleotide polymorphisms (SNPs) between Scottish bovine and human strains and 69 SNPs between the two cattle surveys. Bovine O26:H11 was compared to public EnteroBase ST29 complex genomes and found to have the greatest commonality with O26:H11 strains from the rest of the UK, followed by France, Italy, and Belgium. Virulence profiles of stx-positive bovine and human strains were similar but more conserved for the stx2a subtype. O26:H11 stx-negative ST29 (n = 17) and ST396 strains (n = 5) were isolated from 19 cattle herds; all were eae-positive, and 10 of these herds yielded strains positive for ehxA, espK, and Z2098, gene markers suggestive of enterohaemorrhagic potential. There was a significant association (p &lt; 0.001) between nucleotide sequence percent identity and stx status for the bacteriophage insertion site genes yecE for stx2 and yehV for stx1. Acquired antimicrobial resistance genes were identified in silico in 12.1% of bovine and 17.7% of human O26:H11 strains, with sul2, tet, aph(3″), and aph(6″) being most common. This study describes the diversity among Scottish bovine O26:H11 strains and investigates their relationship to human STEC infections
    corecore